Surface Defect Inspection in Images Using Statistical Patches Fusion and Deeply Learned Features

نویسندگان

چکیده

Defect detection in images is a challenging task due to the existence of tiny and noisy patterns on surface images. To tackle this challenge, defect approach proposed paper using statistical data fusion. First, breaks large image that contains multiple separate defects into smaller overlapping patches detect each patch, conventional convolutional neural network approach. Then, fusion maintain spatial coherence cracks aggregate information extracted from enhance overall performance robustness system. The evaluated three benchmark datasets demonstrate its superior terms both individual patch inspection whole inspection.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyp detection in Colonoscopy Videos Using Deeply-Learned Hierarchical Features

This paper summarizes the method of polyp detection in colonoscopy images and provides preliminary results to participate in ISBI 2015 Grand Challenge on Automatic Polyp Detection in Colonoscopy videos. The key aspect of the proposed method is to learn hierarchical features using convolutional neural network. The features are learned in different scales to provide scale-invariant features throu...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

Statistical Fusion of Scientific Images

I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scho...

متن کامل

Fusion and display of 3D SPECT and MR images registered by a surface fitting method

Since 3D medical images such as SPECT and MRI are taken under different patients positioning and imaging parameters, interpretation of them, as reconstructed originally, does not provide an easy and accurate understanding of similarities and differences between them. The problem becomes more crucial where a clinician would like to map accurately region of interest from one study to the ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AI

سال: 2021

ISSN: ['2673-2688']

DOI: https://doi.org/10.3390/ai2010002